ORIGINAL PAPER

KHSO₄: a highly efficient and reusable heterogeneous catalyst for hydroarylation of styrenes

Rajendra D. Patil · Girdhar Joshi · Subbarayappa Adimurthy

Received: 15 December 2009/Accepted: 3 August 2010/Published online: 27 August 2010 © Springer-Verlag 2010

Abstract Hydroarylation of styrenes with arenes/heteroarenes using KHSO₄ (10 mol%) as an efficient heterogeneous catalyst is described. High conversion and selectivity (>99%) were observed for hydroarylation of styrenes with 2-naphthol at reflux temperature of 1,2-dichloroethane. Yields were quantitative with all styrenes. Moderate to good conversions and selectivities were achieved with other aromatics and heteroaromatics under the same conditions. Regeneration and reusability of KHSO₄ were demonstrated. Addition of a trace amount of water could help to reactivate the KHSO₄ through dispersion and to facilitate the hydroarylation reaction.

Keywords $KHSO_4 \cdot Heterogeneous catalysis \cdot Hydroarylation \cdot Styrenes \cdot Aromatics$

Introduction

Functionalization of arenes and heteroarenes is of great importance in synthesis of pharmaceuticals, and agro- and fine chemicals; therefore, various procedures for their acylation and alkylation have been reported. Transitionmetal-catalyzed hydroarylation of alkenes is of particular importance due to its high selectivity, synthetic efficiency, and environmental friendliness. Traditionally, these transformations are performed by Friedel–Crafts reactions with acyl or alkyl halides in combination with at least equimolar quantities of a Lewis acid. Recently, promising transition-

R. D. Patil · G. Joshi · S. Adimurthy (⊠) Analytical Science Discipline, Central Salt and Marine Chemicals Research Institute (CSIR), G. B. Marg, Bhavnagar 364002, India e-mail: sadimurthy@yahoo.com metal- and acid-catalyzed C-H transformations of arenes and heteroarenes have been reported [1-6]. A number of catalytic systems, including ruthenium [7–10], palladium [11–17], platinum [18–20], nickel [21], and indium [22], have been employed for functionalization of heterocycles through carbon-carbon bond formation. Prominent systems, Bi(OTf)₃ [23], BiCl₃ [24], and FeCl₃ [25] catalyzed hydroarylation of styrenes were also reported for synthesis of a variety of 1,1-diarylalkanes in good yields. Boronic esters/acids with palladium complex [26], iodine [27], and an ion-exchange resin [28] are recent developments in the hydroarylation of alkenes. However, these methods require use of stoichiometric or excess amounts of strong acids/ bases and air/moisture-sensitive organometallic reagents. In most studies, the halide salts obtained as byproducts are drawbacks of these reactions.

Results and discussion

In view of our ongoing quest for green and sustainable processes for functionalization of alkenes [29–33] and alkynes [34] for diverse applications, we envisioned a metal-free catalyst system for hydroarylation of styrenes with aromatic compounds in the presence of KHSO₄ (10 mol%) as an efficient catalyst under mild conditions (Scheme 1).

These reactions are particularly interesting from the viewpoint of green chemistry because hydroarylation exhibits perfect atom efficiency and relies on the use of simple arene reactants and safe catalysts, no production of toxic waste material, applicability of various substrates, and heterogeneous catalysis, allowing facile catalyst/ product separation. Careful choice of inorganic acid, solvent, and reaction conditions enabled us to develop a

Scheme 1

convenient protocol, which allows for efficient reaction of various alkenes with various arene functionalities to give the corresponding regioselectively alkylated product in a number of cases.

Initially, to determine the optimum reaction conditions, the reaction of β -naphthol (1) with styrene (2) using a catalytic amount of KHSO4 and in different solvent media was investigated, and the reaction progress and yield were monitored by gas chromatography (GC) (Table 1). The reaction of equimolar amount of 1 with 2 in 5 cm³ 1,2-dichloroethane at reflux for 8 h in presence of 10 mol% KHSO₄ resulted in complete conversion to 3 (Table 1, entry 1). GC and GC-mass spectrometry (GC-MS) analyses of the reaction mixture revealed 98% conversion of 1 to yield the arylated product 3 with more than 99% selectivity. Use of excess amount of KHSO4 under the same conditions resulted in less conversion and the formation of undesired products (Table 1, entries 2-4). When neat reaction was carried out, it indeed gave >99% selective product 3, but led to less conversion (Table 1, entry 5). Use of 10 mol% KHSO₄ showed the highest catalytic activity and selectivity for hydroarylation of styrene with β -naphthol (Table 1, entry 1). Switching to other solvents led to lower conversion and yields under these conditions (Table 1, entries 6–10). Various other catalysts were also applied to the hydroarylation reaction, but showed lower catalytic activity and lower yield of the desired product (Table 1, entries 11-17) than that of KHSO₄.

The effect of temperature on the formation of **3** under the conditions of Table 1 was also studied. This study showed that, at room temperature and at 40 °C, there is no conversion by GC analysis even when the reaction continued up to 15 h (Table 2, entries 1 and 2). However, at 60 °C, 9% conversion and 100% selectivity of the desired product were observed (entry 3). At reflux temperature of 1,2-dichloroethane the best conversion and selectivity were observed (entry 4). Therefore the rest of the experiments were carried out under these optimized conditions.

The scope of the KHSO₄-catalyzed hydroarylation reactions of various styrenes with β -naphthol was examined under the optimized conditions, and results are indicated in Table 3. The hydroarylation reaction of various styrenes having electron-donating substituents with β -naphthol proceeded efficiently to give the corresponding

Table 1 Screening of various catalysts and solvents for hydroarylation of styrene with β -naphthol

Entry	Cat. (mol%)	Solvent	Conv. (%) ^a	Yield (%) ^b	Sel. ^c
1	KHSO ₄ (10)	DCE	98	100	>99:1
2	KHSO ₄ (12.5)	DCE	93	100	>99:1
3	KHSO ₄ (50)	DCE	85	95	97:3
4	KHSO ₄ (100)	DCE	84	100	93:7
5	KHSO ₄ (10)	Neat	63	100	100
6	KHSO ₄ (10)	DCM	65	98	94:6
7	KHSO ₄ (10)	Cyclohexane	91	100	99:1
8	KHSO ₄ (10)	CH ₃ CN	-	-	-
9	KHSO ₄ (10)	CH ₃ OH	61	81	62:38
10	KHSO ₄ (10)	THF	-	-	-
11	NaHSO ₄ (10)	DCE	88	99	98:2
12	HCl (10)	DCE	77	95	98:2
13	HCl (10)	Neat	91	100	89:11
14	H_2SO_4 (10)	DCE	56	97	11:89
15	HNO ₃ (10)	DCE	30	78	-
16	PTS	DCE	68	99	1:99
17	PTS	Neat	28	84	31:69

Reaction conditions: 3.5 mmol of 1, 3.5 mmol of 2, cat, 5 cm^3 solvent/neat, reflux, 8 h

DCE 1,2-dichloroethane, DCM dichloromethane, PTS p-toluenesulfonic acid

^a GC conversions based on **1**

^b GC yields of arylated products based on conversion

^c Selectivity determined by GC of **3a** to others

arylated products in good to high yields with high selectivity (>99:1) (Table 3, entries 1–3). However, hydroarylation reaction of β -naphthol with styrenes having electron-withdrawing substituents also offered high yields and high selectivity (Table 3, entries 4 and 5), except with 4-acetoxystyrene (Table 3, entry 6) for which it gave product **3f** with 93% selectivity, which may be due to the strong electron-withdrawing property of the acetoxy group. All products of Table 3 were formed with high selectivity (except entry 6) of the desired product 3a-3f as determined by ¹H nuclear magnetic resonance (NMR) of the purified products. Note that hydroarylation of various styrenes with β -naphthol provided the desired product as major isomer with all styrenes in excellent yields compared with the reported procedures [33-35]. These facts indicate the efficiency, selectivity, and catalytic activity of the present system.

Table 2 Effect of temperature on hydroarylation of styrene with β -naphthol

GC conversions based on 1

^b GC yields of arylated products

Selectivity determined by GC of 3a to others

Table 3 Hydroarylation of different styrenes with β -naphthol

Entry	R	Time (h)	Product	Yield (%) ^a	Selectivity ^b	Reference ^c
1	–H	8.0	3 a	96	>99:1	
2	-CH ₃	7.0	3b	93	99:1	[28]
3	-t-Bu	6.0	3c	88	99:1	
4	–Br	5.0	3d	93	98:2	
5	-Cl	8.0	3e	94	96:4	
6	-OCOCH ₃	8.0	3f	73	93:7	

Reaction conditions: 3.5 mmol of 1, 3.5 mmol of 2a-2f, 5 cm³ DCE ^a Isolated yields

^b Determined by ¹H NMR of desired product to other isomer

^c Identity confirmed by comparison of spectroscopic data

To assess the reusability of KHSO₄, after completion of the reaction, the KHSO₄ was retrieved from the reaction mixture by simple filtration, dried, and recycled under the same experimental conditions, but GC analysis showed no formation of hydroarylated product. Furthermore, to corroborate the reusability of the catalyst, another reaction was carried out by the addition of a trace amount of water (through a syringe) to the recovered catalyst under the same conditions; GC analysis showed 85% conversion with 97% selectivity of the desired product (Fig. 1). This suggests that the hydrated form of the catalyst is active for this

Fig. 1 KHSO₄ recyclability chart

transformation. Although a small amount of water was beneficial for recycling the catalyst (KHSO₄), when the reaction was tested without KHSO₄, on the addition of a drop of water no product was detected by GC-MS analysis.

This fact helps to rule out the contribution of H₂O alone to promote the hydroarylation reactions. In another set of recycling of KHSO₄, when D₂O was added instead of H₂O, no deuterated product was detected, however the desired hydroarylated product was obtained. We reasoned that a trace amount of water could help to disperse the KHSO₄ to facilitate the hydroarylation reaction [35].

As can be evidenced from the scanning electron microscope (SEM) images (Fig. 2) of fresh and recovered KHSO₄, the fresh KHSO₄ is surrounded by a number of H_2O molecules, which is not the case for the recovered KHSO₄. The surrounding water molecules help the dispersion of the catalyst, and thus activate the hydroarylation reaction.

As evident from the recyclability chart of KHSO₄ (Fig. 1), the catalyst could be easily recovered and reused for up to three consecutive cycles with good conversions. Therefore a reaction mechanism for electrophilic substitution of styrenes with 2-naphthol is proposed in Scheme 2.

To explore the scope and limitations of the present catalytic procedure, representative examples of functionalized aromatic and heteroaromatic compounds were treated with styrene and substituted styrenes, and the results are summarized in Table 4.

As shown in Table 4, various substituted styrenes reacted smoothly with α -naphthol to give corresponding hydroarylated products in 48-72% isolated yields with 90-98% selectivity (Table 4, entries 1-3). The reaction of phenol with *t*-butylstyrene (Table 4, entry 4) and styrene (Table 4, entry 5) gave moderate yields (43% and 42%) of

SEM image of fresh KHSO4

SEM image of recovered KHSO₄

hydroarylated product with high selectivity (>99:1) in the former case. The same trend is observed in the reaction of p-cresol with methylstyrene and t-butylstyrene (Table 4, entries 6 and 7), but with good yields. The relatively low yield of thiophene with styrene is due its lower reactivity compared with naphthols and phenols under the present conditions (Table 4, entry 8). However, the reaction of 2-methythiophene with t-butylstyrene gave the corresponding hydroarylated product in good yield with high selectivity (Table 4, entry 9).

Conclusions

Herein we describe a general, mild, and efficient method for hydroarylation of styrenes with various aromatics and heteroaromatics using KHSO₄ (10 mol%) as a highly efficient and selective heterogeneous catalyst. Styrenes with electron-donating substituents showed higher selectivity for the hydroarylation reaction than those with electron-withdrawing substituents. KHSO₄ could be recovered and reused up to a minimum of three consecutive cycles with good conversion under the conditions studied. The present catalytic system has remarkable advantages such as: good activity and selectivity in a number of cases, no need to maintain dry or inert atmospheric conditions, ready availability, low cost, and recoverable and reusable catalyst, and importantly, it does not generate any toxic waste. This simple procedure offers a very attractive alternative for synthesis of motifs that are found in various bioactive molecules.

Experimental

All products from Table 1 were analyzed by GC–MS using a Shimadzu GCMS-QP2010. Gas chromatograms of compounds listed in Table 1 were recorded on a Thermo Trace GC Ultra using HP-5 column. ¹H and ¹³C NMR spectra were recorded on a spectrometer operating at 500 and 125 MHz, respectively, in CDCl₃ unless otherwise stated. Chemical shifts are reported in ppm relative to the appropriate standard tetramethylsilane (TMS). Fourier-transform infrared (FT-IR) spectra were recorded on a Perkin Elmer GX-2000 spectrometer. Mass spectra were recorded on a micromass Q-Tof microTM in ES+ mode. Analytical thinlayer chromatography (TLC) was performed on Aluchrosep Silica Gel 60/UV₂₅₄ plates. Purification of compounds (Tables 3, 4) was carried out by column chromatography using 100-200 mesh silica gel. All reactions were carried out in air without any special precautions. Unless otherwise stated, all reactions were carried out in an oil bath with magnetic stirring, and yield refers to isolated yields in Tables 3 and 4. Scanning electron microscope (SEM, LEO 1430 UP model) was used to observe the morphology of KHSO₄ before and after reaction.

General procedure for hydroarylation of styrenes

All reactions were carried out in air without any special precautions. To a stirred solution of 1 or 4 (3.5 mmol) and substituted styrene (3.5 mmol) in 5 cm³ 1,2-dichloroethane

Table 4 Hydroarylation of styrenes with arenes and heteroarenes

Entry	4	2	Time (h)	5	Yield (%) ^a	Selectivity ^b	Reference ^c
1	4a	2a	8	5a	72	91:9	[28]
2	4 a	2e	12	5b	67	90:10	
3	4 a	2d	24	5c	48	98:2	
4	4b	2c	14	5d	43	>99:1	
5	4b	2a	15	5e	42	77:23	[27]
6	4 c	2b	10	5f	72	68:32	
7	4 c	2c	10	5g	73	70:30	
8	4d	2b	15	5h	33	73:27	[27]
9	4e	2c	14	5i	53	>99:1	

Reaction conditions: 3.5 mmol of 4a-4e, 3.5 mmol of 2a-2e, 10 mol% KHSO4, 5 cm³ DCE, 80 °C, 8 h

^a Isolated yield

^b Determined by ¹H NMR of purified main product to other isomer

^c Identity confirmed by comparison of spectroscopic data

(DCE), 47.0 mg commercially available KHSO₄ (10 mol%) was added. The mixture was allowed to reflux at 80 °C for 8 h. The progress of the reaction was monitored by TLC. The reaction mixture was cooled to room temperature and filtered to remove KHSO₄. The KHSO₄ was washed with 5 cm³ DCE, and the filtrate was concentrated in vacuo. The residue was subjected to column chromatography on silica gel (hexane–ethyl acetate) to obtain pure hydroary-lated products.

1-(1-Phenylethyl)-2-naphthol (**3a**, C₁₈H₁₆O)

Brown viscous liquid. ¹H NMR (500 MHz, CDCl₃): $\delta = 1.91$ (s, 3H), 5.23 (s, 1H), 5.31 (q, J = 7.0 Hz, 1H), 7.1 (d, J = 9.0 Hz, 1H), 7.35 (t, J = 7.5 Hz, 1H), 7.44 (q, J = 8.0 Hz, 3H), 7.51 (d, J = 7.51 Hz, 2H), 7.56 (t, J = 8.0 Hz, 1H), 7.77 (d, J = 8.5 Hz, 1H), 7.91 (d, J = 8.0 Hz, 1H), 8.14 (d, J = 9.0 Hz, 1H) ppm; ¹³C NMR (125 MHz, CDCl₃): $\delta = 18.9$, 36.5, 121.0, 124.6, 124.8, 125.6, 128.3, 128.4, 128.9, 130.4, 130.6, 130.7, 131.5, 134.6, 145.6, 153.2 ppm; IR (neat): $\overline{\nu} = 3,499$, 3,059, 3,026, 2,969, 2,934, 2,876, 1,661, 1,623, 1,601, 1,512, 1,448, 1,374, 1,260, 1,210, 1,147, 1,075, 1,025, 933, 855, 813, 751, 701, 587, 529, 504, 450 cm⁻¹; GC–MS: m/z (%) = 248 (100) [M⁺], 233 (92), 215 (72), 203 (20), 189 (10), 115 (28), 77 (18), 63 (7); LRMS: calcd 248.12, found 248.15.

1-[1-(4-tert-Butylphenyl)ethyl]-2-naphthol (**3c**, C₂₂H₂₄O)

Reddish-brown viscous liquid. ¹H NMR (500 MHz, CDCl₃): $\delta = 1.21$ (s, 9H), 1.67 (d, J = 7.0 Hz, 3H), 4.88 (s, 1H), 5.03 (q, J = 7.0 Hz, 1H), 6.90 (d, J = 8.5 Hz, 1H), 7.25 (m, 5H), 7.38 (t, J = 8.0 Hz, 1H), 7.57 (d, J = 8.5 Hz, 1H), 7.70 (d, J = 8.0 Hz 1H), 7.98 (d, J = 5.0 Hz, 1H) ppm; ¹³C NMR (125 MHz, CDCl₃): $\delta = 17.2$, 31.3, 34.5, 119.5, 122.5, 123.1, 123.8, 126.1, 126.6, 126.9, 128.7, 128.9, 129.7, 132.9, 140.1, 149.9, 151.7 ppm; IR (neat): $\bar{\nu} = 3,452$, 3,056, 2,959, 2,872, 1,664, 1,602, 1,511, 1,463, 1,393, 1,366, 1,261, 1,206, 1,148, 1,019, 932, 813, 749, 687, 559, 429 cm⁻¹; GC–MS: m/z (%) = 304 (100) [M⁺], 289 (95), 247 (40), 233 (30), 215 (25), 170 (60), 161 (15), 144 (27), 130 (15), 123 (38), 103 (18), 91 (12), 77 (8), 65 (3); LRMS: calcd 304.18, found 304.28.

1-[1-(4-Bromophenyl)ethyl]-2-naphthol (**3d**, C₁₈H₁₅BrO)

Dark-brown viscous liquid. ¹H NMR (500 MHz, CDCl₃): $\delta = 1.68$ (d, J = 7.0 Hz, 3H), 4.85 (s, 1H), 5.07 (q, J = 7.0 Hz, 1H), 6.88 (d, J = 8.5 Hz, 1H), 7.13 (t, J = 7.0Hz, 1H), 7.22 (q, J = 7.5 Hz, 3H), 7.27 (d, J = 7.5 Hz, 2H), 7.34 (t, J = 8.0 Hz, 1H), 7.55 (d, J = 8.5 Hz, 1H), 7.68 (d, J = 8.0 Hz 1H), 7.92 (d, J = 8.5 Hz, 1H) ppm; ¹³C NMR (125 MHz, CDCl₃): $\delta = 17.2$, 34.9, 119.4, 122.7, 123.1, 123.9, 126.6, 126.8, 127.2, 128.7, 128.9, 129.1, 129.7, 132.9, 143.8, 151.5 ppm; IR (neat): $\overline{\nu} = 3,397,3,028,2,998,$ 2,922, 2,837, 1,610, 1,510, 1,457, 1,369, 1,298, 1,246, 1,176, 1,109, 1,034, 827, 742, 688, 547, 419 cm⁻¹; GC–MS: *m*/*z* (%) = 326 (56) [M⁺], 311 (52), 293 (3), 231 (55), 215 (12.5), 202 (25), 170 (100), 141 (15), 128 (2.5), 116 (27), 101 (35), 89 (12.5), 77 (13); LRMS: calcd for C₁₈H₁₅BrO [K⁺] 364.99, found 364.33.

1-[1-(4-Chlorophenyl)ethyl]-2-naphthol

$(\textbf{3e},\,C_{18}H_{15}ClO)$

Dark-brown viscous liquid. ¹H NMR (500 MHz, CDCl₃): $\delta = 1.69$ (d, J = 7.0 Hz, 3H), 4.86 (s, 1H), 5.03 (q, J = 7.5 Hz, 1H), 6.90 (d, J = 9.0 Hz, 1H), 7.17 (m, 4H), 7.23 (t, J = 7.5 Hz, 1H) 7.32 (t, J = 7.5 Hz, 1H), 7.57 (d, J = 8.5 Hz, 1H), 7.69 (d, J = 8.0 Hz, 1H), 7.84 (d, J = 8.0 Hz, 1H) ppm; ¹³C NMR (125 MHz, CDCl₃): $\delta = 17.4$, 34.3, 119.0, 123.0, 123.2, 123.4, 126.6, 128.5, 128.82, 128.88, 128.9, 129.8, 132.1, 132.7, 142.8, 151.2 ppm; IR (neat): $\overline{\nu} = 3,487$, 3,058, 2,962, 2,873, 1,622, 1,511, 1,462, 1,395, 1,365, 1,260, 1,205, 1,149, 1,018, 932, 812, 745, 689, 592, 468 cm⁻¹; GC–MS: m/z (%) = 282 (98) [M⁺], 267 (100), 249 (18), 231 (47), 215 (15), 170 (19), 139 (20), 116 (27), 101 (35), 88 (12), 77 (13), 63 (7); LRMS: calcd for C₁₈H₁₅ClO [Na⁺] 305.07, found 305.20.

4-[1-(2-Hydroxy-1-naphthyl)ethyl]phenyl acetate (**3f**, C₂₀H₁₈O₃)

Dark-brown viscous liquid. ¹H NMR (500 MHz, CDCl₃): $\delta = 1.77$ (d, J = 7.0 Hz, 3H), 2.25 (s, 3H), 5.12 (q, J = 7.5 Hz, 1H), 5.20 (s, 1H), 6.95 (d, J = 9.0 Hz, 1H), 7.0 (d, J = 8.5 Hz, 2H), 7.31 (m, 3H), 7.40 (t, J = 7.0 Hz, 1H), 7.62 (d, J = 8.5 Hz, 1H), 7.76 (d, J = 8.0 Hz, 1H), 7.96 (d, J = 8.0 Hz, 1H) ppm; ¹³C NMR (125 MHz, CDCl₃): $\delta = 17.5$, 21.1, 34.3, 119.1, 121.7, 123.0, 123.6, 126.5, 128.2, 128.7, 128.8, 129.7, 132.8, 141.9, 149.0, 151.4, 169.9 ppm; IR (neat): $\overline{\nu} = 3,434$, 3,057, 2,966, 2,930, 1,739, 1,666, 1,625, 1,506, 1,436, 1,369, 1,199, 1,167, 1,017, 913, 848, 814, 744, 522, 463, 422 cm⁻¹; GC-MS: m/z (%) = 306 (5) [M⁺], 264 (100), 249 (89), 231 (52), 171 (85), 115 (48), 101 (29), 94 (13), 77 (18), 65 (12); LRMS: calcd for C₂₀H₁₈O₃ [Na⁺] 329.12, found 329.13.

2-[1-(4-Chlorophenyl)ethyl]-1-naphthol (**5b**, C₁₈H₁₅ClO)

Dark-brown viscous liquid. ¹H NMR (500 MHz, CDCl₃): $\delta = 1.6$ (d, J = 7.0 Hz, 3H), 4.0 (q, J = 7.0 Hz, 1H), 5.1 (s, 1H), 7.1 (d, J = 8.5 Hz, 2H), 7.2 (d, J = 8.0 Hz, 2H), 7.3 (d, J = 8.0 Hz, 2H), 7.4 (t, J = 4.5 Hz, 2H), 7.7 (t, J = 5.5 Hz, 2H), 8.0 (d, J = 8.5 Hz, 2H) ppm; ¹³C NMR (125 MHz, CDCl₃): $\delta = 21.0$, 38.2, 120.8, 121.0, 124.9, 125.2, 125.6, 125.7, 125.9, 127.8, 128.9, 132.4, 133.5, 143.7, 148.1 ppm; IR (neat): $\overline{v} = 3,538, 3,059, 2,970, 2,932, 2,875, 1,659, 1,576, 1,490, 1,389, 1,262, 1,198, 1,090, 1,055, 1,016, 895, 820, 784, 749, 566, 542 cm⁻¹; GC–MS: <math>m/z$ (%) = 282 (86) [M⁺], 267 (90), 249 (10), 231 (32), 215 (8), 202 (28), 170 (100), 141 (23), 115 (25), 101 (33), 89 (10), 77 (15); LRMS: calcd 282.08, found 282.85.

2-[1-(4-Bromophenyl)ethyl]-1-naphthol

(**5c**, C₁₈H₁₅BrO)

Dark-brown viscous liquid. ¹H NMR (500 MHz, CDCl₃): $\delta = 1.6$ (d, J = 7.5 Hz, 1H), 4.4 (q, J = 7 Hz, 1H), 5.1 (s, 1H), 7.1 (d, J = 8.0 Hz, 2H), 7.3 (d, J = 8.5 Hz, 1H), 7.3 (d, J = 8.5 Hz, 2H), 7.4 (m, 2H), 7.7 (m, 1H), 8.0 (t, J = 9.5 Hz, 1H) ppm; ¹³C NMR (125 MHz, CDCl₃): $\delta = 21.0, 38.4, 120.6, 120.9, 121.0, 124.9, 125.1, 125.71, 125.75, 126.0, 127.9, 129.4, 132.0, 133.5, 144.2, 148.1 ppm; IR (neat): <math>\bar{\nu} = 3,504, 3,059, 2,969, 2,871, 1,657, 1,573, 1,491, 1,352, 1,150, 1,016, 811, 786, 618, 450, 422 cm⁻¹; GC–MS: <math>m/z$ (%) = 326 (55) [M⁺], 311 (53), 293 (3), 231 (55), 215 (13), 202 (25), 170 (100), 141 (15), 128 (3), 116 (28), 101 (35), 89 (13), 77 (13); LRMS: calcd 326.03, found 326.75.

2-[1-(4-tert-Butylphenyl)ethyl]phenol (5d, C₁₈H₂₂O)

Dark-brown viscous liquid. ¹H NMR (500 MHz, CDCl₃): $\delta = 1.3$ (s, 9H), 1.4 (d, J = 7 Hz, 2H), 3.6 (t, J = 6.5 Hz, 1H), 6.3 (m, 1H), 6.4 (d, J = 15.5 Hz, 2H), 7.2 (m, 2H), 7.3 (m, 3H) ppm; ¹³C NMR (125 MHz, CDCl₃): $\delta = 22.8$, 32.9, 43.6, 126.9, 127.0, 127.4, 128.5, 129.6, 136.3, 136.5, 144.3, 151.6 ppm; IR (neat): $\overline{\nu} = 3,413$, 3,059, 3,019, 2,958, 2,869, 1,583, 1,511, 1,474, 1,447, 1,364, 1,270, 1,201, 1,098, 1,022, 820, 739, 693, 563, 479 cm⁻¹; GC–MS: m/z (%) = 254 (38) [M⁺], 239 (100), 223 (8), 197 (25), 181 (8), 165 (5), 121 (20), 98 (25), 91 (13), 77 (8); LRMS: calcd for C₁₈H₂₂O [-1] 253.17, found 252.83.

4-Methyl-2-[1-(4-methylphenyl)ethyl]phenol

$(5f, C_{16}H_{18}O)$

Colorless viscous liquid. ¹H NMR (500 MHz, CDCl₃): $\delta = 1.58$ (d, J = 7.0 Hz, 3H), 2.27 (s, 3H), 2.29 (s, 3H), 4.27 (q, J = 7.0 Hz, 1H), 4.61 (s, 1H), 6.61 (d, J = 8.0 Hz, 1H), 6.88 (d, J = 8.0 Hz, 1H), 7.02 (s, 1H), 7.08 (d, J = 8.0 Hz, 2H), 7.13 (d, J = 8.0 Hz, 2H) ppm; ¹³C NMR (125 MHz, CDCl₃): $\delta = 20.9$, 21.1, 21.2, 38.5, 116.0, 127.5, 127.9, 128.6, 129.5, 130.0, 131.9, 136.1, 142.4, 151.2 ppm; IR (neat): $\overline{v} = 3,502$, 3,433, 3,021, 2,968, 2,926, 2,870, 1,611, 1,503, 1,457, 1,372, 1,328, 1,257, 1,190, 1,117, 1,047, 815, 781, 730, 511, 469, 419 cm⁻¹; GC–MS: m/z (%) = 226 (65) [M⁺], 211 (100), 196 (18), 134 (50), 105 (8), 91 (18), 77 (12), 65 (7); LRMS: calcd 226.14, found 226.24.

2-[1-(4-tert-Butylphenyl)ethyl]-4-methylphenol(**5g**, C₁₉H₂₄O)

Colorless viscous liquid. ¹H NMR (500 MHz, CDCl₃): $\delta = 1.28$ (s, 9H), 1.60 (d, J = 7.0 Hz, 3H), 2.28 (s, 3H), 4.28 (q, J = 6.5 Hz, 1H), 4.56 (s, 1H), 6.64 (d, J = 7.5 Hz, 1H), 6.90 (d, J = 8.0 Hz, 1H), 7.04 (s, 1H), 7.17 (d, J = 8.0 Hz, 2H), 7.30 (d, J = 8.0 Hz, 2H) ppm; ¹³C NMR (125 MHz, CDCl₃): $\delta = 22.4$, 22.6, 33.0, 36.0, 40.0, 127.2, 128.7, 129.4, 130.1, 131.5, 133.4, 143.6, 150.8, 152.7 ppm; IR (neat): $\overline{\nu} = 3,438$, 2,963, 2,927, 1,632, 1,507, 1,383, 1,264, 1,114, 1,020, 669, 620, 421 cm⁻¹; GC–MS: m/z (%) = 268 (42) [M⁺], 253 (100), 211 (15), 197 (14), 134 (9), 105, 91 (15), 77 (11), 65 (8); LRMS: calcd 268.18, found 268.24.

2-[1-(4-tert-Butylphenyl)ethyl]-5-methylthiophene (**5i**, C₁₇H₂₂S)

Colorless viscous liquid. ¹H NMR (500 MHz, CDCl₃): $\delta = 1.2$ (s, 9H), 1.5 (d, J = 7.0 Hz, 3H), 2.3 (s, 3H), 4.1 (q, J = 7 Hz, 1H), 6.5 (d, J = 3 Hz, 1H), 7.1 (d, J = 8 Hz, 2H), 7.2 (d, J = 8 Hz, 2H) ppm; ¹³C NMR (125 MHz, CDCl₃): $\delta = 15.3$, 23.2, 31.3, 31.4, 40.4, 42.0, 123.1, 124.4, 125.3, 125.8, 126.8, 126.9, 128.0, 134.7, 137.8, 143.1 ppm; IR (neat): $\overline{\nu} = 3,055$, 3,024, 2,964, 2,870, 1,656, 1,511, 1,456, 1,405, 1,365, 1,266, 1,109, 1,018, 831, 800, 671, 572, 463, 419 cm⁻¹; GC–MS: m/z (%) = 258 (48) [M⁺], 243 (100), 228 (18), 213 (13), 201 (8), 187 (3), 152 (3), 125 (8), 100 (25), 91 (5), 77 (3); LRMS: calcd for C₁₇H₂₂S [-1] 257.14, found 256.91.

Acknowledgments We thank DST, New Delhi, India for the financial support of this project under the Green Chemistry Task Force Scheme (no. SR/S5/GC-02A/2006). We would like to acknowledge Mr. Hitesh, Mr.V. K. Aggrawal, Mr. Harshad/Miss. Daksha, Mr. A. K. Das and Mr. Jayesh of this institute for their help in analyzing NMR, IR, GC/GC-MS, LC-MS and SEM, respectively. R. D. Patil and G. Joshi are thankful to CSIR, New Delhi, India for the award of their Senior Research Fellowships.

References

- 1. Dyker G (1999) Angew Chem Int Ed 38:1698
- 2. Dyker G, Muth GE, Hashmi ASK, Ding L (2003) Adv Synth Catal 345:1247
- 3. Sezen B, Sames D (2003) J Am Chem Soc 125:10580

- 4. Sezen B, Sames D (2003) J Am Chem Soc 125:5274
- 5. Muhlthau F, Schuster O, Bach T (2005) J Am Chem Soc 127:9348
- Liu J, Muth E, Florke U, Henkel G, Merz K, Sauvageau J, Schwalke E, Dyker G (2006) Adv Synth Catal 348:456
- 7. Kakiuchi F, Murai S (2002) Acc Chem Res 35:826
- Guari Y, Castellanos A, Sabo-Etienne S, Chaudret B (2004) J Mol Catal A 212:77
- 9. Jun CH, Hong JB, Kim YH, Chung KY (2000) Angew Chem Int Ed 39:3440
- 10. Youn SW, Pastine SJ, Sames D (2004) Org Lett 6:581
- 11. Cacchi S, Fabrizi G (2005) Chem Rev 105:2873
- Grimster NP, Gauntlett C, Godfrey CRA, Gaunt MJ (2005) Angew Chem Int Ed 44:3125
- Kimura M, Futamata M, Mukai R, Tamaru Y (2005) J Am Chem Soc 127:4592
- Bandini M, Melloni A, Piccinelli F, Sinisi R, Tommasi S, Umani-Ronchi A (2006) J Am Chem Soc 128:1424
- 15. Trost BM, Quancard J (2006) J Am Chem Soc 128:6314
- 16. Liu C, Widenhoefer RA (2006) Chem Eur J 12:2371
- 17. Stuart DR, Fagnou K (2007) Science 316:1172
- Liu C, Han X, Wang X, Widenhoefer RA (2004) J Am Chem Soc 126:3700
- 19. Han X, Widenhoefer RA (2006) Org Lett 8:3801
- 20. Zhang Z, Wang X, Widenhoefer RA (2006) Chem Commun 3717
- Nakao Y, Kanyiva KS, Oda S, Hiyama T (2006) J Am Chem Soc 128:8146
- 22. Yausuda M, Somyo T, Baba A (2006) Angew Chem Int Ed 45:793
- 23. Kischel J, Jovel I, Mertins K, Zapf A, Beller M (2006) Org Lett 8:19
- 24. Sun HB, Li B, Hua R, Yin Y (2006) Eur J Org Chem 4231
- 25. Rueping M, Nachtsheim BJ, Scheidt T (2006) Org Lett 8:3717
- Iwai Y, Gligorich KM, Sigman MS (2008) Angew Chem Int Ed 47:3219
- 27. Chu CM, Huang WJ, Liu JT, Yao CF (2007) Tetrahedron Lett 48:6881
- Das B, Krishnaiah M, Laxminarayana K, Damodar K, Kumar DN (2009) Chem Lett 38:42
- 29. Patil RD, Joshi G, Adimurthy S, Ranu BC (2009) Tetrahedron Lett 50:2529
- Agrawal MK, Adimurthy S, Ganguly B, Ghosh PK (2009) Tetrahedron 65:2791
- Adimurthy S, Ramachandraiah G, Bedekar AV, Ghosh S, Ranu BC, Ghosh PK (2006) Green Chem 8:916
- Adimurthy S, Ghosh S, Patoliya PU, Ramachandraiah G, Agrawal MK, Gandhi MR, Upadhyay SC, Ghosh PK, Ranu BC (2008) Green Chem 10:232
- 33. Adimurthy S, Ramachandraiah G, Ghosh PK (2007) Synth Commun 37:1579
- 34. Adimurthy S, Malakar CC, Beifuss U (2009) J Org Chem 74:5648
- 35. Guo X, Wang J, Li CJ (2009) J Am Chem Soc 131:15092